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1. Introduction

A capin PG(k — 1, q) is a set of points no three of which are collinear. If we writerthe
points as columns of a matrix we obtaiiika n)-matrix such that every set of three columns

is linearly independent, hence the generator matrix of a linear orthogonal array of strength
3. This is a check matrix of a linear code with minimum distancd. We arrive at the
following:

THEOREM1 The following are equivalent:
e Asetofn pointsin P& — 1, q), which form a cap.
e Ag-ary linear orthogonal array of length,rdimension k and strength 3.
e Aqg-ary linear codgn, n — k, 4]4.

Denote bym,(k, g) the maximum cardinality of a cap IRG(k, q). Assumeq > 2. Itis

known that
q+1 if g is odd

M2(2,9) = {q +2 if q is even

andmy(3, q) = g2 + 1. Only two valuesmy(k, q) are known whem > 2, k > 3. These
arems(4, 3) = 20 (the Pellegrino caps [6]) and,(5, 3) = 56 (the Hill cap [5]). In this
paper we are going to establish the following:

THEOREM?2 my(4, 4) = 41

The lower bound has been established by Tallini [7] in 1964. In the last section we will
give two essentially different 41-caps PG(4, 4). We have to prove tha® G(4, 4) does
not contain a 42-cap.
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Assume there is a 42-cdp C PG(4, 4). Denote bya(i) the number of hyperplanes
meetingkC in preciselyi points. Construct a quaternafy, 42)-matrix G with the points of
the cap as columns. Piit = {Py, P,, ..., P42}, whereP; corresponds to columjof G.
Matrix G is a generator matrix of a quaternary linear cédef length 42 and dimension
5. Denote byA; the number of code-words of weightThe rows ofG will be denoted
byvi,i =1,2,3,4,5 Let0# X = (X1, X2, ...,X42) € C. Thenx = Zlekivi, where
Li € F4. Consider the hyperpland = (A1, ..., A5)*. We haveP; € H <= x; = 0.
This shows that there is a 1-1 correspondence between hyperplanes interkeating
points and 1-dimensional subspaces of c@dehose nonzero vectors have weight-42
This proves the following well-known fact:

THEOREM3 LetK C PG(4, 4) be a42-cap and a quaternary code generated by a matrix
whose columns represent the point&oDenote by & ) the number of hyperplanes meeting
K in precisely i points, by Athe number of code-words of weighti=1, 2, ..., 42 Then
the following holds for all i:

A =3-a[42-1i).

Itis known that the maximum possible minimum distance of a quaternary code of length 42
and dimension 5 isl = 29, see Brouwer’s data base [3]. Theorem 3 shows that some
hyperplaneH must meefC in at least 13 points.

LEMMA 1 LetKC ¢ PG(4, 4) be a42-cap. Thereisahyperplane H suchtfanH| > 13.

Clearly £ N H is a cap inPG(3, 4). Its cardinality is therefore bounded by 17 from
above. Our proof will consist of two steps: We will classify all capits(3, 4) with at
least 13 points, up to operation of the groBp' L (4, 4). The second and decisive step is
to run a program, which in each of these cases completes an exhaustive search for 42-caps
intersecting a fixed hyperplane in a given cap of cardinaity3. The program is written in
C++. The central recursive procedure is printed and explained in Section 3. The program
needs about 1MB of memory. On a HP 762 workstation it runs from 17 hours when
starting from the ovoid ir° G(3, 4) up to 19 days starting from a 13-capR5(3, 4).

2. CapsinPG(3,4)
2.1. Capsin Ovoids

We are going to review some basic facts of geometric algebra. For an introduction see Artin
[1]. It is well-known that the maximum size of a capG(3, q), q > 2isg? + 1. Also,
the only 17-cap irP G(3, 4) is the ovoid. Ovoids may be described as follows:

Let Q be a non-degenerate quadratic form defined on the vector §paecé/ (2m, q).
Denote by(, ) the symmetric bilinear form such that

QX+yY)=QX)+ QY+ X, y)

for all x, y € Fq. Here we have specialized to the case of characteristic 2. TWeQ) is
of one of two possible types, which are distinguished by the Witt irtledefined as the
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dimension of the largest totally isotropic subspate- mis called the (+)typed = m—1

the (-)type. The group of isomorphisms (the orthogonal group) is defined as the set of all
elements inG L(2m, q), which respect this quadratic form. It is denoted®y¥, (q) and
Q,,(), respectively. Here we are interested in the (-)type in dimension 4. The points of
PG(3, q) are the 1-dimensional subspaces/ofThe collection of isotropic points form a
capQ C PG(3, q). Itis easy to see thad hasqg? + 1 points (see [1]). The order 6%, (q)

(in characteristic 2) is

1, (@] = (@ — D(@® + Dg*(q + D2 = 2(9° — D3*@* + D).

It is known that<; (q) is isomorphic to a subgroup d&I'L(2, g?), in its action on the
points of the projective lind® G(1, g°). PutGy = PGL(2,16) = SL(2,16). This is a
simple group, which under this isomorphism maps to a subgroup of indexZ; (#).

As PT'L,(g%)/PGLx(g?) is cyclic it follows that the isomorphism carriés, (4) to G =
SL»(16)(¢), whereg is induced by the field automorphism— x*. We study the operation

of G on subsets of cardinality at least 13 BiG(1, 16). As Gg is 3-transitive there is

one such orbit for each of the cardinalities 17,16,15,14. The operation on the 13-sets is
similar to the operation on the complements, the 4-sets. The orders of our groups are
9o = |Go| = 17.16.15 andg = |G| = 2 go. As (%) does not divideg, there must be

more than one orbit. For concrete calculations we use the representatiggad given

in the last section. Consider the orbits@§ on 4-subsets. Because of 3-transitivity each
such orbit has arepresentative, 0, 1, x}. The stabilizer ofco, 0, 1} in Gg is a symmetric

group generated by the elements> 7 + 1 andt > 1/7. The orbits of this group on 14
elements of-15 \ F, are the following:

2 4 11 12 14 2 7 1
{w, 0%}, {€, €3, €*, €, €12, ¥y and{e?, €8, €7, €8, €2, €%3).

It follows that Go has at most 3 orbits of 4-sets. The Frobenius automorphidires

00,0 and 1. As it maps — €* it follows that the orbits ofG on 4-sets agree with the
orbits of Gg. In order to be on the safe side let us calculate the number of orbits. Here is
the character-table &L,(16), followed by the permutation charactes on the unordered
4-sets. The character-tables of the groB@sL,(q) have been given in [2].

The character-table ofSL(2,16)

1z d al a® a® bs
1 1 1 1 1 1 1 1
St 16 0 1 1 1 1 -1
xi 17 1 " 4+a ¥ +a ¥ of a8 o5 4 0
® 15 -1 0 0 0 0 —(BIS + B7I)

o () 28 0 0 0 10 0
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Herea, g are primitive 18" and 17" roots of unity, respectively. We have=1, ..., 7;
j =1...,8r € {1,2,4,7}. a andb are elements of orders 15 and 1731.(2, 16),
respectively. Each nonidentity power @thas(a) as centralizer, each nonidentity power
of b has(b) as centralizer. As we know the cycle type of each eleme@laR, 16) we
can also determine the number of unordered 4-sets it fixes. These are the vadydsoof
examplea has type (15,1,1). Clearly;(a) = 0. As a® has type (3,3,3,3,3,1,1) we see that
this element fixes precisely 10 unordered 4-sets, hep@®) = 10.

The number of orbits o5L(2, 16)(= Gp) an unordered 4-sets is given by the scalar
product(m4, 1), where 1 is the trivial character. We obtain

1 1
(4, D) = 171615 (( 47> + 281715+ 10.17.16) =3
We conclude thaGg (and therefore als@) has three orbits of 4-sets. Denote these orbits
by 01, O, O3 where; is the shortest orbit. We have seen that every unordered triple is
contained in exactly 2 members 6%, in 6 of O, and in 6 ofO3. By double counting we
obtain|Oy| = (V) - 2/4 = 17.16.15/12 = 17.5.4 = 340, and|O,| = |03 = 3|O4/. Itis
reconforting to note that these numbers add u(ﬁ)a The stabilizer of a representative of
O, therefore has ordey/340 = 24 and the stabilizers of representatives of the remaining
orbits have orders 28 = 8.

LEMMA 2 G has three orbits of unordered 4-subsets in its action on the projective line.
The corresponding stabilizers have orders 24, 8 and 8, respectively. These orbits are also
full orbits under Gy.

So far we considered the action BfGL4(q) on quadratic forms. The grouf, (q)
was defined as the stabilizer of on ovoid under this group. It is clear that the larger group
PI'L4(q) permutes quadratic forms. Denote the stabilizer of an ovoid under this group by
O, (q). Letg = 2. Then PI'L4(q) is an extension oP G L4(q) by the cyclic group of
order f generated by the Frobenius mapping> x2. As the image of an ovoid under the
Frobenius is an ovoid again, it follows th&X, (q) is an extension of2, (q) by a cyclic
group of orderf. Itis in fact known that

0, (9) = PTL2(g?

and the operation aD; (q) on the points of the ovoid is similar to the action®F L,(q?)

on the points of the projective line. Extending our earlier discussid@h ofl P G(1, 16) to
the action ofPT'L,(16) we see that this group fuses the two long orbits of 4-sets uBder
into one orbit. This yields the following:

LEMMA 3 PT'L,(16) has two orbits of unordered 4-subsets in its action on the projective
line. The corresponding stabilizers have orders 48 and 8, respectively.

LEmMA 4 Two different ovoids in P G3, 4) intersect in less than 13 points.

Proof. The quadratic form, which determines an ovoid, may be described by

Q(X1, X2, X3, Xa) = X1X2 + X5 + XaXa + @X5.
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We start by exhibiting aseV' = {P, = (p;) | i = 1,2,...,9} of 9 points, which is
contained invV (Q) and in no other ovoid. We choose tpgs as follows:

Pi

(1,1,1,0)
(w ,?,1,0)
(@? @ ,1,0)
(1w ,0,1)
(w,1,0,2)
(0?,w?,0,1)
(1w ,1,1)
(w,1,1,1)

(a)z,a)2 ,1,1)

O©CoOoO~NOUITA,WNE

Let p € ©; (4) be described by
p(X) = (X1, 0”2, X3, Xa).

Itis clear thato has order 3 anlPy, P,, Ps}, { P4, Ps, Ps}, {P7, Pg, P} are orbits ofp.

AssumeN C V(Q'), whereQ’(Xy, X, X3, Xq) = Zi“zl AixZ + ij Wi, jXiX;. Consider
the three equations given Y (p;) = Q'(p2) = Q'(p3) = 0. The sum of these equations
yields u12 = is. Other linear combinations yielgt; 3 = A2 and uz3 = A1 In the
same way the equatior® (ps) = Q'(ps) = Q'(ps) = 0 yield 1> = w?ha, u14 =
k2, 2.4 = w?r1. We can express all coefficients in terms\@f A2, Az anduz 4. Finally,
consider the equatior@’(p7) = Q'(ps) = Q'(pg) = 0. The sum of these equations yields
3.4 = Az. Remain two independent vanishing linear combinations a@hdx,. This shows
A = Ao = 0. If A3 = 0, we obtain the contradictio®’ = 0. We can therefore normalize
A3 = 1and obtainQ’ = Q.

We have shown that the only quadric containixigs V (Q).

In order to complete the proof of the Lemma it suffices to show that each of the two orbits
of 13-subsets of our ovoid under the action of the full orthogonal group contains a superset
of V. The union of\/ with a full orbit of p and the fixed poinfl : 0: 0 : O is a 13-cap,
whichis invariant undep. This is therefore a member of the short orbit of 13-caps under the
action of the orthogonal group. Remains to show that not all 13-caps contaihbrejong
to the short orbit. We can work in the grotiG L,(16) in its action on the projective line.
Elements of order 3 have precisely 2 fixed points. We can therefore change notation such
that

0 =(1,2,3)(4,5,6)(7,8,9(10, 11, 12)(13, 14, 15(X)(Y).

Here we have abbreviaté®l byi, henceNV = {1,2,...,9}. LetM = N U{10,11, X, Y}.
We claim that there is no elemept € PGL(2, 16) of order 3 stabilizingM. This will
prove then that the corresponding 13-cap belongs to the long orbit under the full orthogonal
group.
Assumep’ is such elementp’ operates on the complemdi®, 13, 14, 15} of M. It must
have precisely one fixed point there. If this fixed pointis 12, thlesigrees either witl or
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with p~1 in its action on{13, 14, 15}. Because of the sharp triple transitivity BfG L,(q)
we conclude thap’ = p or p’ = p~. This is a contradiction.

It follows that we can assume without restriction that 13 is a fixed poipt.df follows
that eithen12, 14, 15) or (12, 15, 14) is a cycle ofo’. In the former casg,13, 15) is a cycle
of pp’. It follows from the structure oP GL, thatpo’ has order 2. As it maps 14> 12
we must have that’ : 10 — 14, contradiction. In the latter cagg’~! contains the cycle
(13,15) and maps : 14> 12 It must therefore map 12> 14. This forcesp’ : 14 +— 10,
another contradiction. [ |

It follows from Lemma 4 that each cap of sizel3 in PG(3, 4) is contained in at most
one ovoid. This has the consequence that the automorphism group of such a cap, which is
contained in an ovoid, equals the stabilizer of the cap under the action of the automorphism
group of the ovoid. We arrive at the following:

THEOREM4 We consider orbits of caps of sizel3 contained in some ovoid in P@G, 4)
under the action of PL4(4).
The following hold:

e There is one such orbit for each of the cardinalities 17,16,15,14. The automorphism
groups have order$7.16.15.4, 16.15.4, 120and 24, respectively.

e There are two such orbits for cardinality 13. The automorphism groups have orders 48
and 8, respectively.

The following is an ovoid:

The ovoid in PG(3,4)

2 2

1 0 0 0 1 o 1 w o o 0 1 0 w
01 00 1w 1 w 1 o o 0 1 & 0 ®w @
0O 01 0 1 1 0 O 1 1 1 o o o o o? o
0 0 01 0 O 1 1 1 1 1 11 1 1 1 1

The first 13 columns yields a cap with 8 automorphisms. A cap with automorphism group
of order 48 is obtained by restricting to column1. ., 12 and 15.

2.2. Caps not Contained in Ovoids

Let us call a cap inP G(3, 4) non-embeddableif it is not contained in an ovoid. The
maximal cardinality of a non-embeddable cap is 14. According to [4] there is exactly one
PI'L (4, 4)-orbit of non-embeddable 14-caps. Here is a representative:
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The complete 14-capCi4in PG(3, 4)

1 0 0 0 1 & w 1 o? w 1 0 w o?
01 00 1w & 1 w & 0 1 o o
0O 01 0 1 1 1 0 0 0 1 1 1 1
0 0 01 0 O 0 1 1 1 1 1 1 1

LetG bethe stabilizeraof,14in PI'L (4, 4), Gg = GNP GL(4, 4). ThenGgis asemidirect
product of an elementary abelian grobpby G L (3, 2). We haveEg = («1, a2, a3), where

010 10017 011171
1000 ~|0101 1011
“=10010/* |o0o10|"®TJoo10
0001 0001 0001
Points of P G(3, 4) are written as column vector&g is generated b¥y, r ando, where
101 w 010w
]l011e?*] 011w
"“looo 1] |ooo01
0010 1101

Heret has order 4; has order 7. The stabilizer &f;4in PT'L(4, 4) is the direct product
of Gg and its centeftas¢) of order 2.¢ denotes the Frobenius automorphism. In particular
the automorphism grou@ is transitive on the points df14.

It follows from [4] that there is precisely one orbit of complete 13-caps. A non-complete
non-embeddable 13-cap must be embeddabi@ jnAs the automorphism group &f4 is
transitive on its points we see that there is at most one orbit of non-embeddable non-complete
13-caps. Itis easy to check that the 13-caps contain&djrare indeed non-embeddable.

We conclude that there are precisely two orbits of non-embeddable 13-caps. Here is a
complete 13-cap:

The complete 13-capCi3in PG(3, 4)

1 0 0 0 1 & o 1 &?* w 1 o 0
01 00 1w o 1 0o o 0 1 w
0O 01 0 1 1 1 0O 0 0 1 1 1
0O 0 01 0 O 0 1 1 1 1 1 1

3. The Main Recursive Procedure

3.1. The Recursive Procedure

We print here the heart of the C++ program, the recursive procedure. In the following
subsection we will provide an explanation.
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void rt(const int ti){
int i,j,ii,z ;
bl a;
if(ti>maxx){
maxx=ti;
if (ti>0)
pri(maxx);
}
for(i=0;i<an[ti];i++){
z=-1;
for(j=i+1;j<anftil;j++){
a=tv[ti][j].b;
if (!(bbrti][i][a.&a.x)){
Z++;
idti][z]=j;
}
if (z+ti>=agk-2-lae){
anfti+1]=z+1;
erg[ti]=tv[ti][i].n;
for (j=0;j<=z;j++){
tv[ti+1][j]=tvtifid[t] ]
for (ii=0;ii<abl;ii++)
bb[ti+1][j][ii]=bb[ti][i[ii]|bb[ti[id[ti] [ [iil;
for (ii=0;ii<tai[tv[ti][i].n][tv[ti+1][j].n];ii++){
a=tabl[tv[ti][i]. n][tv[ti+1][j].n][ii];
bb[ti+1][j][a.i]|=a.x;

}
rt(ti+1);

3.2. Description of the Recursive Procedure

We use homogeneous coordinates. A poinPiG(4, 4) is therefore represented as :

X1 @ X2 : X3 : X4). Consider the hyperpland = (x4 = 0). AcapC C H is given. Put
m = |C|. We wish to determine the 42-cafisc P G(4, 4) satisfyinglC N H = C. As the
pointwise stabilizer oH in PG Ly(4) is transitive on the affine spadeG(4, 4) \ H, we
can assume that poit = (0: 0:0:0: ) € K. The program performs an exhaustive
search for such caps, which cont&rand intersecH precisely inC.

The parameteti describes thelepth of the program. When the recursive procedure is
called for the first time we hawé = 0. Whenever the recursion procedure is called with the
new value oti, we are given a cap;i_1 D CU{F} of sizem+ 1+ti. PutP_; = CU{F}.
Forany cap/ c PG(4, 4) denote byG(U/) (thegood pointg the set of affine pointp ¢ I/,
which complement/ to a cap. The cardinality d&(7:—1) is stored inan[ti], the points
of G(Pyj_1) are stored inv[ti][i], wherei = 0...,an[ti] — 1.

Table bb[ti][ p] contains the seG(Py_1 U {p}) for all p € G(P;i_1). Another table
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tab[ p][q] stores the points on the line through poimtsand g. Naturally this table will
contain only the information that is really needed in the program. With these preparations
we are ready to describe the recursive procedure:

e Ifthe depth reached is bigger than the current maximum, then the maximum is updated
and some output is produced.

e The program runs then through @lle G(P;_1). Assume in the sequgl is given.
e The pointp is used to extend the cap provided

| G(Pi—1 U{pHI + [Pri-1] = 4L

Assume poinfp satisfies the last condition. Put
P = Pri—1 U {p}.
The following steps are then performed by the program:
e Some parameters are updated.

e Forallg € G(Py) the sets€G(P;i U {q}) are determined and storedim[ti + 1][q].
This is done using

G(Pi Ufa}) = (G(Pi-1 U {ph) N G(Pi-1 U {ah) \ tab[p][q].

o Finally the recursive procedure is called again at depth 1.

4. Appendix
4.1. The FieldFy6

We describdF1g as an extensioR4(¢) of F4 = {0, 1, w, w?}. Our irreducible polynomial
is f(X) = X2+ X + w. This leads to the relatioe? + ¢ + w = 0. In order to see that
f (X) has maximal exponent write the elements—g§ asaec + B8, wherea, B € F4. It
follows €2 = (¢ + w)e = €2+ ew = € + w + ew = ew? + w. Proceeding in the same
way we gek? = € + 1, €® = € + € = w. As w has order 3, it is clear thathas order 15,
thus f (X) has maximal exponent. The remaining powerg afe obtained by observing
et = wel, 1% = w2 . The additive structure is already determined:

l+e4+e*=0 14e24e8=0 14+e34+€%=0
1468 4+eB=0 14+’ 4+e2=0 1+e14¢62-=-0




160 EDEL AND BIERBRAUER

4.2. A4l-capsinPG(4,4)

The columns of the following matrik; form a 41-cap.

10000213010223333122103103230321021023032
01000132101013221322010121332022301101303
00100303223220123321330101023302112102012
00010032111103331223101030223133210010212
00001130331132032231021013303320332120102

Clearly we have writteriF; = {0, 1, 2, 3}, where 2+ 3 = 2- 3 = 1. Matrix My is the
generator matrix of a quaternary code [5128],. The weight distribution of this code is

Agg = 120, Axg = 360, Az; = 288 Azp = 135 Az7 =120

The columns of the following matri¥, form another 41-cap i G(4, 4).

10000112213322333222333020022100311310012
01000100200210110110130300230321231311222
00100012002001101101103302003312213311222
0001011001110001111121211112111211111101011
00001001111122222211133333300022222200113

The weight distribution of the code generatedMy is
Aoy =9, Ayg =12, Ayg = 105 Azp = 660

Azp = 90, Ags = 36, Ags = 51, Azg = 60.

These caps are nonequivalent as their weight distributions are different.
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