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Abstract. We settle the question of the maximal size of caps inPG(4,4), with the help of a computer program.
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1. Introduction

A cap in PG(k− 1,q) is a set of points no three of which are collinear. If we write then
points as columns of a matrix we obtain a(k,n)-matrix such that every set of three columns
is linearly independent, hence the generator matrix of a linear orthogonal array of strength
3. This is a check matrix of a linear code with minimum distance≥ 4. We arrive at the
following:

THEOREM1 The following are equivalent:

• A set of n points in PG(k− 1,q), which form a cap.

• A q-ary linear orthogonal array of length n, dimension k and strength 3.

• A q-ary linear code[n,n− k,4]q.

Denote bym2(k,q) the maximum cardinality of a cap inPG(k,q). Assumeq > 2. It is
known that

m2(2,q) =
{

q + 1 if q is odd
q + 2 if q is even

andm2(3,q) = q2 + 1. Only two valuesm2(k,q) are known whenq > 2, k > 3. These
arem2(4,3) = 20 (the Pellegrino caps [6]) andm2(5,3) = 56 (the Hill cap [5]). In this
paper we are going to establish the following:

THEOREM2 m2(4,4) = 41.

The lower bound has been established by Tallini [7] in 1964. In the last section we will
give two essentially different 41-caps inPG(4,4). We have to prove thatPG(4,4) does
not contain a 42-cap.
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Assume there is a 42-capK ⊂ PG(4,4). Denote bya(i ) the number of hyperplanes
meetingK in preciselyi points. Construct a quaternary(5,42)-matrixG with the points of
the cap as columns. PutK = {P1, P2, . . . , P42}, wherePj corresponds to columnj of G.
Matrix G is a generator matrix of a quaternary linear codeC of length 42 and dimension
5. Denote byAi the number of code-words of weighti . The rows ofG will be denoted
by vi , i = 1,2,3,4,5. Let 0 6= x = (x1, x2, . . . , x42) ∈ C. Thenx = ∑5

i=1 λi vi , where
λi ∈ F4. Consider the hyperplaneH = (λ1, . . . , λ5)

⊥. We havePj ∈ H ⇐⇒ xj = 0.
This shows that there is a 1-1 correspondence between hyperplanes intersectingK in i
points and 1-dimensional subspaces of codeC, whose nonzero vectors have weight 42− i .
This proves the following well-known fact:

THEOREM3 LetK ⊂ PG(4,4) be a 42-cap andC a quaternary code generated by a matrix
whose columns represent the points ofK.Denote by a(i ) the number of hyperplanes meeting
K in precisely i points, by Ai the number of code-words of weight i, i = 1,2, . . . ,42. Then
the following holds for all i:

Ai = 3 · a(42− i ).

It is known that the maximum possible minimum distance of a quaternary code of length 42
and dimension 5 isd = 29, see Brouwer’s data base [3]. Theorem 3 shows that some
hyperplaneH must meetK in at least 13 points.

LEMMA 1 LetK ⊂ PG(4,4)be a 42-cap. There is a hyperplane H such that|K∩H | ≥ 13.

ClearlyK ∩ H is a cap inPG(3,4). Its cardinality is therefore bounded by 17 from
above. Our proof will consist of two steps: We will classify all caps inPG(3,4) with at
least 13 points, up to operation of the groupP0L(4,4). The second and decisive step is
to run a program, which in each of these cases completes an exhaustive search for 42-caps
intersecting a fixed hyperplane in a given cap of cardinality≥ 13. The program is written in
C++. The central recursive procedure is printed and explained in Section 3. The program
needs about 1MB of memory. On a HP 712/60 workstation it runs from 17 hours when
starting from the ovoid inPG(3,4) up to 19 days starting from a 13-cap inPG(3,4).

2. Caps inPG(3,4)

2.1. Caps in Ovoids

We are going to review some basic facts of geometric algebra. For an introduction see Artin
[1]. It is well-known that the maximum size of a cap inPG(3,q),q > 2 is q2 + 1. Also,
the only 17-cap inPG(3,4) is the ovoid. Ovoids may be described as follows:

Let Q be a non-degenerate quadratic form defined on the vector spaceV = V(2m,q).
Denote by(, ) the symmetric bilinear form such that

Q(x + y) = Q(x)+ Q(y)+ (x, y)

for all x, y ∈ Fq. Here we have specialized to the case of characteristic 2. Then(V, Q) is
of one of two possible types, which are distinguished by the Witt indexd, defined as the
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dimension of the largest totally isotropic subspace.d = m is called the (+)type,d = m−1
the (-)type. The group of isomorphisms (the orthogonal group) is defined as the set of all
elements inGL(2m,q), which respect this quadratic form. It is denoted byÄ+2m(q) and
Ä−2m(q), respectively. Here we are interested in the (-)type in dimension 4. The points of
PG(3,q) are the 1-dimensional subspaces ofV. The collection of isotropic points form a
capQ ⊂ PG(3,q). It is easy to see thatQ hasq2+ 1 points (see [1]). The order ofÄ−4 (q)
(in characteristic 2) is

|Ä−4 (q)| = (q − 1)(q2+ 1)q2(q + 1)2= 2(q2− 1)q2(q2+ 1).

It is known thatÄ−4 (q) is isomorphic to a subgroup ofP0L(2,q2), in its action on the
points of the projective linePG(1,q2). Put G0 = PGL(2,16) = SL(2,16). This is a
simple group, which under this isomorphism maps to a subgroup of index 2 inÄ−4 (4).
As P0L2(q2)/PGL2(q2) is cyclic it follows that the isomorphism carriesÄ−4 (4) to G =
SL2(16)〈φ〉,whereφ is induced by the field automorphismx 7→ x4.We study the operation
of G on subsets of cardinality at least 13 ofPG(1,16). As G0 is 3-transitive there is
one such orbit for each of the cardinalities 17,16,15,14. The operation on the 13-sets is
similar to the operation on the complements, the 4-sets. The orders of our groups are
g0 = |G0| = 17.16.15 andg = |G| = 2 · g0. As

(17
4

)
does not divideg, there must be

more than one orbit. For concrete calculations we use the representation ofF16 as given
in the last section. Consider the orbits ofG0 on 4-subsets. Because of 3-transitivity each
such orbit has a representative{∞,0,1, x}. The stabilizer of{∞,0,1} in G0 is a symmetric
group generated by the elementsτ 7→ τ + 1 andτ 7→ 1/τ. The orbits of this group on 14
elements ofF16 \ F2 are the following:

{ω,ω2}, {ε, ε3, ε4, ε11, ε12, ε14} and{ε2, ε6, ε7, ε8, ε9, ε13}.

It follows that G0 has at most 3 orbits of 4-sets. The Frobenius automorphismφ fixes
∞,0 and 1. As it mapsε 7→ ε4 it follows that the orbits ofG on 4-sets agree with the
orbits ofG0. In order to be on the safe side let us calculate the number of orbits. Here is
the character-table ofSL2(16), followed by the permutation characterπ4 on the unordered
4-sets. The character-tables of the groupsPGL2(q) have been given in [2].

The character-table ofSL(2,16)

1 z ar a3 a6 a5 bs

1 1 1 1 1 1 1 1

St 16 0 1 1 1 1 −1

χi 17 1 αir + α−ir α3i + α−3i α6i + α−6i α5i + α−5i 0

2j 15 −1 0 0 0 0 −(β js + β− js)

π4
(17

4

)
28 0 0 0 10 0
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Hereα, β are primitive 15th and 17th roots of unity, respectively. We havei = 1, . . . ,7;
j = 1, . . . ,8, r ∈ {1,2,4,7}. a andb are elements of orders 15 and 17 inSL(2,16),
respectively. Each nonidentity power ofa has〈a〉 as centralizer, each nonidentity power
of b has〈b〉 as centralizer. As we know the cycle type of each element ofSL(2,16) we
can also determine the number of unordered 4-sets it fixes. These are the values ofπ4. For
example,a has type (15,1,1). Clearlyπ4(a) = 0. As a5 has type (3,3,3,3,3,1,1) we see that
this element fixes precisely 10 unordered 4-sets, henceπ4(a5) = 10.

The number of orbits ofSL(2,16)(= G0) an unordered 4-sets is given by the scalar
product(π4,1), where 1 is the trivial character. We obtain

(π4,1) = 1

17.16.15

((
17

4

)
+ 28.17.15+ 10.17.16

)
= 3.

We conclude thatG0 (and therefore alsoG) has three orbits of 4-sets. Denote these orbits
byO1,O2,O3 whereO1 is the shortest orbit. We have seen that every unordered triple is
contained in exactly 2 members ofO1, in 6 ofO2 and in 6 ofO3. By double counting we
obtain|O1| =

(17
3

) · 2/4 = 17.16.15/12= 17.5.4 = 340, and|O2| = |O3| = 3|O1|. It is
reconforting to note that these numbers add up to

(17
4

)
. The stabilizer of a representative of

O1 therefore has orderg/340= 24 and the stabilizers of representatives of the remaining
orbits have orders 24/3= 8.

LEMMA 2 G has three orbits of unordered 4-subsets in its action on the projective line.
The corresponding stabilizers have orders 24, 8 and 8, respectively. These orbits are also
full orbits under G0.

So far we considered the action ofPGL4(q) on quadratic forms. The groupÄ−4 (q)
was defined as the stabilizer of on ovoid under this group. It is clear that the larger group
P0L4(q) permutes quadratic forms. Denote the stabilizer of an ovoid under this group by
O−4 (q). Let q = 2 f . Then P0L4(q) is an extension ofPGL4(q) by the cyclic group of
order f generated by the Frobenius mappingx 7→ x2. As the image of an ovoid under the
Frobenius is an ovoid again, it follows thatO−4 (q) is an extension ofÄ−4 (q) by a cyclic
group of orderf. It is in fact known that

O−4 (q) ∼= P0L2(q
2)

and the operation ofO−4 (q) on the points of the ovoid is similar to the action ofP0L2(q2)

on the points of the projective line. Extending our earlier discussion ofG on PG(1,16) to
the action ofP0L2(16) we see that this group fuses the two long orbits of 4-sets underG
into one orbit. This yields the following:

LEMMA 3 P0L2(16) has two orbits of unordered 4-subsets in its action on the projective
line. The corresponding stabilizers have orders 48 and 8, respectively.

LEMMA 4 Two different ovoids in PG(3,4) intersect in less than 13 points.

Proof. The quadratic form, which determines an ovoid, may be described by

Q(x1, x2, x3, x4) = x1x2+ x2
3 + x3x4+ ωx2

4.
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We start by exhibiting a setN = {Pi = 〈pi 〉 | i = 1,2, . . . ,9} of 9 points, which is
contained inV(Q) and in no other ovoid. We choose thep′i s as follows:

i pi

1 (1,1,1,0)
2 (ω ,ω2,1,0)
3 (ω2 ,ω ,1,0)
4 (1,ω ,0,1)
5 (ω ,1,0,1)
6 (ω2,ω2,0,1)
7 (1,ω ,1,1)
8 (ω ,1,1,1)
9 (ω2,ω2 ,1,1)

Let ρ ∈ Ä−4 (4) be described by

ρ(x) = (ωx1, ω
2x2, x3, x4).

It is clear thatρ has order 3 and{P1, P2, P3}, {P4, P5, P6}, {P7, P8, P9} are orbits ofρ.
AssumeN ⊂ V(Q′), whereQ′(x1, x2, x3, x4) =

∑4
i=1 λi x2

i +
∑

i< j µi, j xi xj . Consider
the three equations given byQ′(p1) = Q′(p2) = Q′(p3) = 0. The sum of these equations
yields µ1,2 = λ3. Other linear combinations yieldµ1,3 = λ2 andµ2,3 = λ1. In the
same way the equationsQ′(p4) = Q′(p5) = Q′(p6) = 0 yield µ1,2 = ω2λ4, µ1,4 =
ω2λ2, µ2,4 = ω2λ1.We can express all coefficients in terms ofλ1, λ2, λ3 andµ3,4. Finally,
consider the equationsQ′(p7) = Q′(p8) = Q′(p9) = 0. The sum of these equations yields
µ3,4 = λ3.Remain two independent vanishing linear combinations ofλ1 andλ2.This shows
λ1 = λ2 = 0. If λ3 = 0, we obtain the contradictionQ′ = 0. We can therefore normalize
λ3 = 1 and obtainQ′ = Q.

We have shown that the only quadric containingN is V(Q).
In order to complete the proof of the Lemma it suffices to show that each of the two orbits

of 13-subsets of our ovoid under the action of the full orthogonal group contains a superset
of N . The union ofN with a full orbit of ρ and the fixed point(1 : 0 : 0 : 0) is a 13-cap,
which is invariant underρ.This is therefore a member of the short orbit of 13-caps under the
action of the orthogonal group. Remains to show that not all 13-caps containingN belong
to the short orbit. We can work in the groupPGL2(16) in its action on the projective line.
Elements of order 3 have precisely 2 fixed points. We can therefore change notation such
that

ρ = (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(X)(Y).

Here we have abbreviatedPi by i, henceN = {1,2, . . . ,9}. Let M = N ∪ {10,11, X,Y}.
We claim that there is no elementρ ′ ∈ PGL(2,16) of order 3 stabilizingM. This will
prove then that the corresponding 13-cap belongs to the long orbit under the full orthogonal
group.

Assumeρ ′ is such element.ρ ′ operates on the complement{12,13,14,15} of M. It must
have precisely one fixed point there. If this fixed point is 12, thenρ ′ agrees either withρ or



156 EDEL AND BIERBRAUER

with ρ−1 in its action on{13,14,15}. Because of the sharp triple transitivity ofPGL2(q)
we conclude thatρ ′ = ρ or ρ ′ = ρ−1. This is a contradiction.

It follows that we can assume without restriction that 13 is a fixed point ofρ ′. It follows
that either(12,14,15) or (12,15,14) is a cycle ofρ ′. In the former case,(13,15) is a cycle
of ρρ ′. It follows from the structure ofPGL, thatρρ ′ has order 2. As it maps 147→ 12
we must have thatρ ′ : 10 7→ 14, contradiction. In the latter caseρρ ′−1 contains the cycle
(13,15) and maps : 147→ 12. It must therefore map 127→ 14. This forcesρ ′ : 14 7→ 10,
another contradiction.

It follows from Lemma 4 that each cap of size≥ 13 in PG(3,4) is contained in at most
one ovoid. This has the consequence that the automorphism group of such a cap, which is
contained in an ovoid, equals the stabilizer of the cap under the action of the automorphism
group of the ovoid. We arrive at the following:

THEOREM4 We consider orbits of caps of size≥ 13contained in some ovoid in PG(3,4)
under the action of P0L4(4).

The following hold:

• There is one such orbit for each of the cardinalities 17,16,15,14. The automorphism
groups have orders17.16.15.4,16.15.4,120and 24, respectively.

• There are two such orbits for cardinality 13. The automorphism groups have orders 48
and 8, respectively.

The following is an ovoid:

The ovoid in PG(3,4)

1 0 0 0 1 ω2 1 ω2 ω 1 ω2 ω ω2 0 1 0 ω

0 1 0 0 1 ω 1 ω 1 ω ω2 0 1 ω2 0 ω ω2

0 0 1 0 1 1 0 0 1 1 1 ω ω ω ω2 ω2 ω2

0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1

The first 13 columns yields a cap with 8 automorphisms. A cap with automorphism group
of order 48 is obtained by restricting to columns 1,2 . . . ,12 and 15.

2.2. Caps not Contained in Ovoids

Let us call a cap inPG(3,4) non-embeddableif it is not contained in an ovoid. The
maximal cardinality of a non-embeddable cap is 14. According to [4] there is exactly one
P0L(4,4)-orbit of non-embeddable 14-caps. Here is a representative:
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The complete 14-capK14 in PG(3,4)

1 0 0 0 1 ω2 ω 1 ω2 ω 1 0 ω ω2

0 1 0 0 1 ω ω2 1 ω ω2 0 1 ω ω2

0 0 1 0 1 1 1 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1 1 1 1 1 1 1

LetG be the stabilizer ofK14 in P0L(4,4),G0 = G∩PGL(4,4).ThenG0 is a semidirect
product of an elementary abelian groupE0 by GL(3,2).We haveE0 = 〈α1, α2, α3〉, where

α1 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

α2 =


1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 1

α3 =


0 1 1 1
1 0 1 1
0 0 1 0
0 0 0 1


Points ofPG(3,4) are written as column vectors.G0 is generated byE0, τ andσ, where

τ =


1 0 1 ω

0 1 1 ω2

0 0 0 1
0 0 1 0

 σ =


0 1 0 ω

0 1 1 ω

0 0 0 1
1 1 0 1


Hereτ has order 4,σ has order 7. The stabilizer ofK14 in P0L(4,4) is the direct product
of G0 and its center〈α3φ〉 of order 2.φ denotes the Frobenius automorphism. In particular
the automorphism groupG is transitive on the points ofK14.

It follows from [4] that there is precisely one orbit of complete 13-caps. A non-complete
non-embeddable 13-cap must be embeddable inK14. As the automorphism group ofK14 is
transitive on its points we see that there is at most one orbit of non-embeddable non-complete
13-caps. It is easy to check that the 13-caps contained inK14 are indeed non-embeddable.
We conclude that there are precisely two orbits of non-embeddable 13-caps. Here is a
complete 13-cap:

The complete 13-capK13 in PG(3,4)

1 0 0 0 1 ω2 ω 1 ω2 ω 1 ω 0
0 1 0 0 1 ω ω2 1 ω ω2 0 1 ω2

0 0 1 0 1 1 1 0 0 0 1 1 1
0 0 0 1 0 0 0 1 1 1 1 1 1

3. The Main Recursive Procedure

3.1. The Recursive Procedure

We print here the heart of the C++ program, the recursive procedure. In the following
subsection we will provide an explanation.
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void rt(const int ti){
int i,j,ii,z ;
b1 a;
if(ti>maxx){

maxx=ti;
if (ti>0)

pri(maxx);
}
for(i=0;i<an[ti];i++){

z=-1;
for(j=i+1;j<an[ti];j++){

a=tv[ti][j].b;
if (!(bb[ti][i][a.i]&a.x)){

z++;
id[ti][z]=j;

}
}
if (z+ti>=agk-2-lae){

an[ti+1]=z+1;
erg[ti]=tv[ti][i].n;
for (j=0;j<=z;j++){

tv[ti+1][j]=tv[ti][id[ti][j]];
for (ii=0;ii<abl;ii++)

bb[ti+1][j][ii]=bb[ti][i][ii]|bb[ti][id[ti][j]][ii];
for (ii=0;ii<tai[tv[ti][i].n][tv[ti+1][j].n];ii++){

a=tab[tv[ti][i].n][tv[ti+1][j].n][ii];
bb[ti+1][j][a.i]|=a.x;

}
}
rt(ti+1);

}
}

};

3.2. Description of the Recursive Procedure

We use homogeneous coordinates. A point inPG(4,4) is therefore represented as(x0 :
x1 : x2 : x3 : x4). Consider the hyperplaneH = (x4 = 0). A capC ⊂ H is given. Put
m = |C|. We wish to determine the 42-capsK ⊂ PG(4,4) satisfyingK ∩ H = C. As the
pointwise stabilizer ofH in PGL4(4) is transitive on the affine spacePG(4,4) \ H, we
can assume that pointF = (0 : 0 : 0 : 0 : 1) ∈ K. The program performs an exhaustive
search for such caps, which containF and intersectH precisely inC.

The parametert i describes thedepth of the program. When the recursive procedure is
called for the first time we havet i = 0.Whenever the recursion procedure is called with the
new value oft i,we are given a capPt i−1 ⊃ C ∪{F} of sizem+1+ t i . PutP−1 = C ∪{F}.
For any capU ⊂ PG(4,4) denote byG(U) (thegood points) the set of affine pointsp /∈ U,
which complementU to a cap. The cardinality ofG(Pt i−1) is stored inan[t i ], the points
of G(Pt i−1) are stored intv[t i ][ i ], wherei = 0 . . . ,an[t i ] − 1.

Table bb[t i ][ p] contains the setG(Pt i−1 ∪ {p}) for all p ∈ G(Pt i−1). Another table
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tab[ p][q] stores the points on the line through pointsp andq. Naturally this table will
contain only the information that is really needed in the program. With these preparations
we are ready to describe the recursive procedure:

• If the depth reached is bigger than the current maximum, then the maximum is updated
and some output is produced.

• The program runs then through allp ∈ G(Pt i−1). Assume in the sequelp is given.

• The pointp is used to extend the cap provided

| G(Pt i−1 ∪ {p})| + |Pt i−1| ≥ 41.

Assume pointp satisfies the last condition. Put

Pt i = Pt i−1 ∪ {p}.

The following steps are then performed by the program:

• Some parameters are updated.

• For all q ∈ G(Pt i ) the setsG(Pt i ∪ {q}) are determined and stored inbb[t i + 1][q].
This is done using

G(Pt i ∪ {q}) = (G(Pt i−1 ∪ {p}) ∩ G(Pt i−1 ∪ {q})) \ tab[ p][q].

• Finally the recursive procedure is called again at deptht i + 1.

4. Appendix

4.1. The FieldF16

We describeF16 as an extensionF4(ε) of F4 = {0,1, ω, ω2}. Our irreducible polynomial
is f (X) = X2 + X + ω. This leads to the relationε2 + ε + ω = 0. In order to see that
f (X) has maximal exponent write the elements ofF16 asαε + β, whereα, β ∈ F4. It
follows ε3 = (ε + ω)ε = ε2 + εω = ε + ω + εω = εω2 + ω. Proceeding in the same
way we getε4 = ε + 1, ε5 = ε2+ ε = ω. Asω has order 3, it is clear thatε has order 15,
thus f (X) has maximal exponent. The remaining powers ofε are obtained by observing
ε5+i = ωε i , ε10+i = ω2ε i . The additive structure is already determined:

1+ ε + ε4 = 0 1+ ε2+ ε8 = 0 1+ ε3+ ε14 = 0
1+ ε6+ ε13 = 0 1+ ε7+ ε9 = 0 1+ ε11+ ε12 = 0
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4.2. 41-caps inPG(4,4)

The columns of the following matrixM1 form a 41-cap.

10000213010223333122103103230321021023032
01000132101013221322010121332022301101303
00100303223220123321330101023302112102012
00010032111103331223101030223133210010212
00001130331132032231021013303320332120102

Clearly we have writtenF4 = {0,1,2,3}, where 2+ 3 = 2 · 3 = 1. Matrix M1 is the
generator matrix of a quaternary code [41,5,28]4. The weight distribution of this code is

A28 = 120, A29 = 360, A31 = 288, A32 = 135, A37 = 120.

The columns of the following matrixM2 form another 41-cap inPG(4,4).

10000112213322333222333020022100311310012
01000100200210110110130300230321231311222
00100012002001101101103302003312213311222
00010110011100011111111111111111111101011
00001001111122222211133333300022222200113

The weight distribution of the code generated byM2 is

A24 = 9, A26 = 12, A28 = 105, A30 = 660

A32 = 90, A34 = 36, A36 = 51, A38 = 60.

These caps are nonequivalent as their weight distributions are different.
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